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It is well-known that magnetohydrodynamic (MHD) flows behave differently from
conventional fluid flows in two ways: the magnetic field makes the flow field
anisotropic in the sense that it becomes independent of the coordinate parallel
to the field; and the flow of liquid across the field lines induces an electric current,
leading to ohmic damping. In this paper, an experimental study is presented of the
long-time decay of an initially three-dimensional flow structure subject to a steady
magnetic field, when the ratio of the electromagnetic Lorentz forces to the nonlinear
inertial forces, quantified by the magnetic interaction parameter, N0, takes large as
well as moderate values. This investigation is markedly different from previous studies
on quasi-two-dimensional MHD flows in thin layers of conducting fluids, where only
Hartmann layer friction held the key to the dissipation of the flow.

The initial ‘linear’ phase of decay of an MHD flow, characterized by dominant
Lorentz forces and modelled extensively in the literature, has been observed for the
first time in a laboratory experiment. Further, when N0 is large compared to unity, a
distinct regime of decay of a vortex follows this linear phase. This interesting trend
can be explained in terms of the behaviour of the ratio of the actual magnitudes
of the Lorentz to the nonlinear inertial forces – the true interaction parameter – which
decreases to a constant of order unity towards the end of the linear phase of decay,
and remains invariant during a subsequent ‘nonlinear’ phase.

1. Introduction
Early experimental studies on magnetohydrodynamic (MHD) flows in ducts have

demonstrated that a magnetic field tends to suppress turbulence in an electrically
conducting liquid (Branover et al. 1970a; Slyusarev 1971). It is now well-established
that MHD flows differ from conventional flows in two major respects: the magnetic
field elongates the flow structures in its direction so that the resulting flow field is
anisotropic (see figure 1); and the flow of liquid across the magnetic field lines induces
an electric current, leading to significant Joule dissipation.

Magnetic fields are commonly used to pump, stir and stabilize liquid metals. In
casting operations, the motion of submerged liquid metal jets that feed the casting
moulds is suppressed by the application of an intense, static magnetic field. In the
absence of this ‘electromagnetic braking’, these jets can severely disturb the free
surface of the liquid, leading to the entrainment of oxides and other surface debris.

† Present address: CNRS-EPM, ENSHMG, BP 95, 38402 St-Martin d’Hères Cedex, France.
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Figure 1. Evolution of a spherical vortex whose axis is parallel to an external field, at large N0.
The vortex elongates into a columnar structure. l‖ and l⊥ are the typical longitudinal and transverse
dimensions of the vortex. t2 > t1 > 0.

In fusion tokamaks, the toroidal deuterium–tritium plasma volume is confined by
a toroidal magnetic field of about 15 Tesla provided by a set of superconducting
magnet coils. Between the plasma and the magnetic coils, a lithium coolant blanket
is placed to absorb the energy of the emitted neutrons, to absorb the heat from the
reactor core and also to breed tritium to maintain the fuel supply. The disadvantage
of this scheme is that the interaction between the intense magnetic field and the liquid
metal blanket leads to suppression of turbulence, and a subsequent reduction in heat
transfer rate (Lielausis 1975). Design of effective coolant channels to overcome these
adverse MHD effects is currently a very active area of research.

There is a wealth of information available in the literature on the two-dimensional
nature of MHD turbulence. It was noted that the magnetic field suppressed turbulence
intensities in its direction. The velocity correlation coefficients in the direction of the
applied magnetic field were shown to approach unity, and the energy spectrum
measured perpendicular to the magnetic field displayed a slope of −3 for strong
magnetic fields; see Kolesnikov & Tsinober (1972); Votsish & Kolesnikov (1975).
Sommeria (1988) studied two-dimensional vortices produced in a horizontal layer of
mercury of thickness a (= 20 mm) with a free upper surface, subjected to a uniform
vertical magnetic field. The vortex was forced by an electric current going from an
electrode in the insulating base to the electrically conducting circular outer frame.
The balance between steady electric forcing and the dissipation at the Hartmann
boundary layers, and the free decay of a two-dimensional vortex due to Hartmann
friction were among the cases investigated. When the current was switched off, the
energy of the vortex decayed exponentially on a time scale tH equal to (ρ/σν)1/2 a/B0,
solely due to dissipation in the Hartmann layer.

Except for the studies on energy spectra, early experimental investigations on MHD
flows were aimed primarily at verifying the two-dimensional nature of MHD turbulent
flow structures. Experimental investigations that quantify the long-time evolution of
an initial three-dimensional flow are few and far between. A significant step in this
direction was taken by Alemany et al. (1979), who investigated experimentally the
decay of MHD turbulence when the initial interaction parameter took low (∼ 0.1) as
well as moderate (∼ 1) values. Their configuration consisted of a grid moving through
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a tall vertical column of mercury subjected to an axial, homogeneous DC magnetic
field. They observed that the integral length scale parallel to B increases with time,
and the kinetic energy of the turbulence decays as t−1.7. The latter result indicated the
effect of Joule dissipation of the turbulence. In a later study, Caperan & Alemany
(1985) investigated the development of anisotropy in homogeneous MHD turbulence,
and noted the transition towards a quasi-two-dimensional state.

There have also been different theoretical approaches to the problem of magnetic
damping of vortical flows. The most significant ones are those by Moffatt (1967),
Sommeria & Moreau (1982) and Davidson (1995). These analyses are ‘linear’ in the
sense that the nonlinear inertial terms in the equation of motion are neglected, and
what results is a balance between the linear inertia, ∂u/∂t and the Lorentz forces.
The assumption here is that the characteristic time during which a magnetic field
eliminates velocity gradients in its direction, the Joule time (τ), is small in comparison
with the turn-over time of an eddy, t0(= l/u):

τ = ρ/σB2 � l/u, (1)

where ρ and σ are the density and electrical conductivity of the fluid, l and u are the
typical size and velocity of the vortex, and B is the magnetic flux density, so that the
interaction parameter, N, is large compared to unity:

N = t0/τ = σB2l/ρu� 1. (2)

It is also assumed in these studies that the magnetic Reynolds number, Rm, which
represents the ratio of convection to magnetic diffusion is much lesser than unity. This
important dimensionless group in MHD, identified by Lehnert (1952), brings out the
interplay between the flow and the magnetic field. The condition of low Rm implies
that the field induced by the motion is negligible in comparison with the imposed field,
and the latter can be calculated as if the fluid were at rest. The condition of low Rm
is usually satisfied in laboratory experiments and industrial applications with liquid
metals. Moffatt studied the decay of the Fourier transform of the linearized, inviscid
equation of motion for τ < t < N0τ, where N0 is the initial interaction parameter. The
turbulent kinetic energy was shown to decay as (t/τ)−1/2. The turbulence was described
as two-dimensional, in the sense that all quantities vary slowly in the direction parallel
to B compared with their variation perpendicular to B. Sommeria & Moreau were
concerned with the rate of elongation of a turbulent structure in the direction of the
B-lines. If the flow is treated as inviscid and the advection of momentum is ignored
(N � 1), the equation of motion takes the following simplified form:

∂u

∂t
= −1

ρ
∇p∗ − 1

τ
∇−2

(
∂2u

∂z2

)
, (3)

where p∗ is obtained by adding the irrotational part of the Lorentz force to the fluid
pressure, and ∇−2 is the inverse of the Laplacian operator. As the structure elongates,
the gradient in the z-direction becomes small in comparison with that in the other
two directions, so that, from equation (3), the vorticity transport equation can be
written in the following approximate form:

∂ω

∂t
∼ l2⊥

τ

(
∂2ω

∂z2

)
, (4)

where l⊥ is the transverse length scale. In the above equation, l2⊥/τ is a pseudo-
diffusivity of vorticity along the magnetic field lines. The length scale parallel to the
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field, l‖, then evolves at a rate

l‖ ∼ l⊥(t/τ)1/2. (5)

Davidson (1995) used a result in classical electromagnetism to show that, if a flow
structure evolves in a volume that is either infinite in extent or else bounded by
an electrically insulating surface, the Lorentz force cannot affect the component of
angular momentum parallel to B, H‖. If l⊥ is assumed to be unaffected by the field
during the initial phase of evolution, the condition of constant H‖ can be coupled
with the energy equation to give the laws of evolution of energy and the parallel
length scale obtained by Moffatt and Sommeria & Moreau.

During the decay of a vortex in the linear phase, the current density falls steadily.
Intuitively, the Lorentz forces should weaken as time progresses, and a phase where
the nonlinear inertial forces are also important should ensue. An order-of-magnitude
analysis performed by the authors (Sreenivasan & Alboussière 2000) explores the
decay of a flow structure in a magnetic field, after the initial linear phase has elapsed.
This model is elaborated further in §2, since the results are central to our discussion
in this paper.

The theories put forward for the decay of kinetic energy of an MHD flow field in
the so-called linear phase await experimental validation. It is also interesting to study
experimentally the transition to nonlinearity of a three-dimensional flow in the linear
phase, and the dependence of this transition on the initial interaction parameter.
Also, if the flow is confined by boundaries normal to the external magnetic field, it
would become two-dimensional at some point of time, and this time scale is again
determined by the value of N0. All the above factors have provided motivation for
a new experimental study aimed at investigating the long-time evolution of a three-
dimensional MHD flow field in a steady magnetic field, at large N0. Since vortices are
the building blocks of any turbulent flow, the study of an isolated flow structure in a
magnetic field can be expected to provide a good physical insight into the behaviour
of MHD turbulence. From a practical point of view, the study of a vortex offers
some advantages. First, the generated vortex remains at the same location, enabling
continuous measurement of velocity at a point during its evolution. Secondly, there
are no magnetic field entry effects or field gradients across the diameter of one vortex.
Finally, it is easier to realize interaction parameters greater than unity in a laboratory
with a single vortex, even with a small test section and a moderate magnetic field.

This paper is organized as follows. In § 2, we review the results of the order-of-
magnitude study performed by the authors (Sreenivasan & Alboussière 2000) on
the nonlinear evolution of a vortex in a magnetic field. Section 3 describes the
experimental set-up and the measurement scheme used for studying isolated vortices
in a magnetic field. In § 4, we present the experimental results obtained for a range of
interaction parameters and interpret them. In conclusion, we highlight the principal
accomplishments of this work and discuss the implications of our results in the larger
context of MHD turbulence.

2. Nonlinear decay of a vortex: the governing equations
As mentioned in the previous section, the initial linear evolution of a liquid metal

MHD flow field when N � 1 has been studied theoretically. However, as a flow
structure elongates in the direction of the applied field, the electric current density
in the core of the flow falls because currents are forced to travel along longer paths.
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This is also seen from the curl of Ohm’s law

curlj = σ curl (u× B) = σ(B · ∇)u, (6)

for a spatially uniform magnetic field. In effect, the Lorentz forces, given by j × B,
decrease, and at one stage they balance the nonlinear inertial forces. The evolution
is ‘nonlinear’ thereafter. In spectral terms, the linear phase consists of strong Joule
dissipation occuring in a cone whose axis is the wave vector parallel to the magnetic
field direction, k‖. Since the energy contained in the wave vectors perpendicular to the
magnetic field remains unaffected during this phase, the corresponding perpendicular
length scale, l⊥, can be taken to be approximately invariant. In the nonlinear phase,
one would expect a transfer of energy from the neighbourhood of the wave vector k⊥
into the dissipative cone region. Intuitively, the assumption of constant l⊥ in physical
space does not hold in this phase.

It has been proposed by the authors (Sreenivasan & Alboussière 2000) that, during
nonlinear evolution, the actual ratio of the Lorentz to the inertial forces, called the
true interaction parameter, Nt, is a constant of order unity. The idea essentially is that,
under a steady magnetic field, the equilibrium between the Lorentz and the inertial
forces is preserved. The argument was along the lines of that by Alemany et al.
(1979), who proposed that there exists an equilibrium between Joule dissipation and
nonlinear energy transfer in MHD turbulence. If this argument is used in conjunction
with the principle of conservation of the parallel component of the angular momentum
(Davidson 1995) and the kinetic energy equation, the nonlinear vortex evolution can
be fully described. The global angular momentum is defined as

H = ρ

∫
V

x× u dV . (7)

The density, ρ, being constant and uniform, the conservation of the component of
angular momentum parallel to the magnetic field, H‖, can be written as follows:

E1/2 l2⊥l
1/2

‖ = const, (8)

where E is the global kinetic energy of the vortex (∼ ∫
V
u2dV ). The kinetic energy

equation and the condition of Nt being of order unity are, respectively,

dE

dt
∼ −E

τ

(
l⊥
l‖

)2

, (9)

Nt = N

(
l⊥
l‖

)2

∼ 1, (10)

The right-hand side of the energy equation (9) represents Joule dissipation, and is
obtained by estimating the current density from Ohm’s law. An order-of-magnitude
study of the energy decay of the vortex shows that viscous damping is negligible in
comparison with ohmic damping, and could be dropped in the analysis. The true
interaction parameter is expressed in the form given in relation (10) by estimating the
actual magnitudes of the Lorentz and the inertial forces. Solution of equations (8),
(9) and (10) gives the following laws for decay of energy and growth of length scales,
at large times (t� τ):

E ∼ (t/τ)−1, l‖/l0 ∼ (t/τ)3/5, l⊥/l0 ∼ (t/τ)1/10. (11)

From the above estimates, one can obtain the following nonlinear decay law for the
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ensemble average of the square of the vortex velocity, u2, which is typically measured
in a laboratory experiment:

u2 ∼ E/l2⊥l‖ ∼ (t/τ)−9/5. (12)

From the expression for the true interaction parameter (10), it can be readily shown
that

Nt ∼ N0(t/τ)
−1/2, (13)

Hence, Nt actually decreases with time during the linear phase, and when t ∼ N2
0τ,

the evolution enters the nonlinear regime. This model provides the laws of evolution
of a vortex in both the linear and nonlinear regimes.

Moffatt (1967) had initially proposed that the characteristic duration of the linear
decay phase of MHD turbulence is N0τ, or simply, the turn-over time. A more precise
estimate of the duration of this phase was put forward by Alemany et al. (1979). By
equating the time scales for ohmic dissipation of the eddies and the time taken for
nonlinear transfer of energy into the dissipative cone region (in Fourier space), they

had obtained the estimate t ∼ N4/3
0 τ. However, for an isolated vortex, we have found

that the linear phase lasts until t ∼ N2
0τ. A direct order-of-magnitude calculation

similar to that in relation (13) can also be performed for MHD turbulence, by noting
that the kinetic energy per unit mass, given by the mean square value of the velocity,
u2, follows the (t/τ)−1/2 law. The estimate of Alemany et al. follows.

In the next two sections, we present the details of an experiment to observe the
decay of a single vortex.

3. Experimental set-up
3.1. Test facility

A new experimental test facility was set up to study the long-time evolution of vortices
in a liquid metal subject to a uniform magnetic field. The set-up essentially consists
of (i) a water-cooled electromagnet powered by a 32 kW DC power supply unit, to
supply the desired magnetic field up to a maximum of 1 Tesla, (ii) a current pulser to
generate vortices in the liquid metal subject to this magnetic field, (iii) potential probes
for velocity measurement and (iv) a high-speed automated data-acquisition system
to capture the transient decay phase. The flux density is uniform within 4% over a
length of 200 mm, a breadth of 100 mm and a depth of 100 mm in the air gap of the
magnet. The test section, of inside dimension 200×80×80 mm, and made of insulating
Plexiglas (figure 2), is located centrally between the pole pieces of the magnet. The
box contains mercury of purity 99.99% by weight (density, ρ = 13.55 × 103 kg m−3,
electrical conductivity, σ = 1.04× 106 Ω−1 m−1). Though the unit is sealed at the top
and bottom with O-rings, pure argon is bled over the free surface of the mercury at
periodic intervals, to prevent oxidation and subsequent loss of electrical contact.

The study of the decay of a vortex in a box with electrically insulating boundaries
is probably the closest real life simulation of a vortex evolving freely in an infinite
domain. The presence of conducting walls normal to the magnetic field lines would
mean that there is no gradient of potential at the wall to balance u× B, and the
significant current density causes rapid ohmic damping of the flow; see Platnieks &
Freiberg (1971). More formally, if there is a net flux of electric current across the
boundaries of the domain, the angular momentum of a vortex is not conserved, and
the theoretical decay laws would no longer be valid (Davidson 1995).
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Figure 2. The experimental cell showing 1. Plexiglas test section. 2. Plexiglas base. 3. O-ring seal.
4. Hollow stainless steel shaft. 5. Side potential probes. 6. Expansion chamber. 7. Argon circulation
port. 8. Electrode array for current injection and wall-potential probes.

3.2. Vortex generation mechanism

Several stainless steel electrodes of diameter 1 mm are located flush with the polished
inside surface of one of the walls of the test section to generate isolated vortices.
Vortices are created in the quiescent liquid metal by pulsing an electric current from a
central positive electrode to four surrounding negative electrodes. Figure 3 shows the
front and plan view of one set of electrodes used for the purpose. The power source
of the current pulser consists of 12 2.5 ampere-hour, rechargeable lead-acid cells. The
unit is capable of supplying a maximum of 100 A, at 24 V, for a maximum duration
of 100 ms. The pulse width is controlled by a monostable, and the current passing
through the mercury is monitored across an external resistor that produces a potential
drop of 20 mV A−1 across it. The injected current interacts with the magnetic field, B,
to give rise to a localized swirl motion within the region of injection. The acceleration
of the liquid, due to the Lorentz forces acting on it during injection of electric current,
is given by

∂u

∂t
= (j × B)/ρ, (14)

and hence the characteristic swirl velocity generated in the liquid can be estimated by
integrating the above equation:

uθ ∼ tpIB

ρ l2
, (15)

where tp is the current pulse width in seconds, I is the injected current in amperes
and l is the electrode spacing in metres. The duration of the current pulse, tp, is
chosen so as to be generally smaller than the Joule time. This ensures that the vortex
generation phase does not influence the decay phase of the vortex, i.e. the generated
vortex is not elongated in the direction of the field prior to measurement of its decay.
Thus, the evolution of a freely decaying vortex can be studied. For a magnetic field of
0.5 T acting on mercury, the Joule time is about 50 ms, and a current pulse duration
of 10 ms would be appropriate. However, too small a pulse width cannot be chosen
because the ratio of the characteristic diffusion time of the magnetic field to the
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Figure 3. Direction of the injected current from the central electrode to the surrounding electrodes,
and the resultant velocity generated in the mercury. The location of the potential probes is also
shown.

period of the pulse, called the shielding parameter (Moreau 1990), would be large
compared to unity. In such a case, the penetration of the injected electric current
(and the corresponding magnetic field perturbations) on a time scale of tp would be
confined to a thin layer adjacent to the wall. As a consequence, the generated vortex
would be flat, and not spherical.

For a characteristic length scale of 0.01 m, and a pulse width of 10 ms, the shielding
parameter is

Rω = µσωpl
2 = 0.013 (� 1), (16)

where ωp = 1/tp. The depth of penetration into the liquid metal during this pulse
duration is

Lp ∼ (tp/µσ)1/2 = 0.09 m. (17)

Thus, the problem of limited penetration, the so-called skin effect, does not occur in
our experiments.

The technique of using electric currents to generate vortices in an electrically
conducting fluid is not new; see Sommeria (1988) and Tabeling et al. (1991). The
experiments reported in this paper are different from those performed earlier in thin
layers of liquid metal – the initial size of a vortex being typically 10 mm, the spacing
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between the walls normal to the magnetic field is 80 mm. We are primarily concerned
with the transition from a fully three-dimensional state to an anisotropic, and then a
final two-dimensional state, wherein the parallel length scale of the structure is of the
order of the width of the cavity. At reasonably large Hartmann numbers, one expects
the Joule dissipation due to induced currents in the core of the flow to play a major
role in damping of the vortex, and Hartmann friction to be significant only when
two-dimensionality in the sense described above has been reached (see Appendix B
for a detailed development).

3.3. Instrumentation and data logging

If the measured potential difference is of the order of microvolts, thermoelectric
voltages arising from the use of dissimilar metals can corrupt the signal. Platinum is
ideally suited for potential measurements in mercury because the absolute thermoelec-
tric powers (in µV K−1) of both metals are approximately equal at room temperature.
The tips of the probes were cleaned with methanol and then sputtered with a layer of
gold a few nanometers thick. As gold comes into contact with mercury, it dissolves,
exposing the platinum surface underneath. Measurement probes are located in the re-
gion of vortex formation as shown in figure 3, and spaced 2.5 mm apart. The potential
difference between probes a and b, and that between b and c, should give estimates
for two components of the velocity. These probes also provide information on the
velocity correlation between the opposite walls. If the velocity correlation coefficient
measured from probes aligned with the magnetic field lines and located on opposite
walls rises steeply to unity, we can say that the flow structure has felt the presence of
the boundaries of the domain, and has become nearly two-dimensional.

In addition to the above static probes, a set of axially movable internal potential
probes were provided with the intention of measuring the velocity correlation between
different points in the core of the flow, aligned with the magnetic field lines (see
figure 2). These data could possibly provide information on the growing length scale
of the vortex, and thus the degree of anisotropy.

The potential difference measured by two probes is fed as a differential input
to a low-noise instrumentation amplifier of gain 1000, and the output wires are
taken as twisted, shielded pairs to the data acquisition system. Data is acquired by
a 16-bit resolution, PCI-series card capable of sampling at 105 samples per second
over 32 differential-input channels. One of the digital I/O lines of the card was
configured to drive the current pulser unit. The entire process of current injection and
acquisition was programmed using the software LabVIEW. One realization comprises
the following events: (a) measurement of offsets in every channel (so that variations
with time, if any, can be dealt with), (b) injection of a single current pulse and
simultaneous acquisition of the voltage signals at the rate of at least a 1000 samples
per s, for a period of 2 s, and (c) a time delay of 60 s to enable the liquid to become
quiescent before the next realization.

4. Experimental results
The focus of the experimental study is on understanding the influence of the initial

interaction parameter, or the relative magnitudes of the Lorentz and the inertial
forces, on the evolution pattern. If both the linear and nonlinear phases of decay are
to be captured in one experiment, one should aim to achieve an interaction parameter
sufficiently greater than unity. It should also be possible to suitably reduce the value
of N0 to identify the case when the two forces are of the same order of magnitude
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Figure 4. Data (in mV) recorded during one realization, after low-pass digital filtering, for N0 = 3.
The initial spike corresponds to the current injection.

from the beginning of an experiment. From the estimate of the initial swirl velocity
of the vortex given by equation (15), the following estimate of the initial interaction
parameter can be obtained:

N0 =
σB2l

ρuθ
∼ σBl3

tpI
, (18)

where l, I and tp are related as in (15). Based on the value of N0 desired, suitable
values of B and tp can be chosen (the latter has to be shorter than the Joule time).
This gives the intensity of current I to be used. For example, the case N0 = 3 can be
realized with a flux density of 0.6 T, a pulse width of 10 ms and a current of 20 A.
The corresponding velocity calculated from the estimate (15) is 0.09 m s−1. The data
obtained for these initial conditions are studied first.

4.1. Acquired data

Figure 4 shows the data in millivolts recorded by the probe pair a − b in one
realization, after digital low-pass filtering of the raw data at 30 Hz. This cut-off
ensures removal of 50 Hz and high-frequency noise that otherwise corrupts our low-
frequency (1–20 Hz) signal. The time axis in the figure is normalized with respect
to the Joule time. In figures 5 and 6, the sum of the squares of the two potentials
measured at the injection wall (that correspond to two components of the velocity) is
ensemble-averaged. The square of the potential averaged over 5, 10 and 20 realizations
of the flow is shown for N0 = 3. The ranges 2 < t/τ < 10 and 10 < t/τ < 60 are
shown separately in two figures for clarity. The y-axis is normalized with respect to

the ensemble average of the value at t = τ, (∆φ)2
0. This ‘reference’ value, used in

all subsequent graphs, corresponds to the potential difference measured immediately

after the current-injection phase, and does not represent u2
0 accurately. In fact, the

initial velocity of the vortex cannot be deduced from potential measurements owing
to the significant electric currents present in the core of the flow. In the first phase,
the curves are almost the same, characterized by oscillations. These oscillations could
possibly be the signature of an initial non-axisymmetry of the vortex, because there
are only four outer electrodes to receive the injected current. With a circular ring
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Figure 5. Mean square value of the measured potential difference, normalized with respect to the
value at t = τ, and magnified in the range 2 < t/τ < 10. Averaging over 5, 10 and 20 realizations
gives nearly the same result, indicating a ‘deterministic’ behaviour.
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Figure 6. Mean square value of the measured potential difference, normalized with respect to the
value at t = τ, and magnified in the range 10 < t/τ < 60. The bottom curve is the one obtained for
five realizations. The curve obtained from averaging over 20 realizations has the lowest amplitude
of fluctuations.

of electrodes surrounding the central one, better axisymmetry is possible, and the
fluctuations observed in the curve may disappear. The evolution in the initial phase
is deterministic, since the above behaviour of the curve is reproduced irrespective of
the number of realizations. The study of any one realization of the flow would suffice
to understand the typical evolution of the vortex in this regime. In the second range,
the behaviour is chaotic, and changes with the number of realizations considered.
The curve corresponding to five realizations has more fluctuations in it, and shows a
steeper slope. Though the curves corresponding to 10 and 20 realizations are nearly
identical, the one obtained with 20 realizations is smoother. The amplitude of the
random fluctuations superposed on the mean signal is reduced by averaging. In
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the results presented in § 4.3, an average over 20 realizations is considered. Before
proceeding with a quantitative study of the averaged data in the two regimes of
evolution and their comparisons with theory, a note on the estimation of velocities
from wall-potential measurements is appropriate.

4.2. (∇φ) as a measure of u

Researchers in the past (Branover et al. 1970; Kit 1970) have used potential probes
for measurement of turbulence intensities in mercury contained in a rectangular duct,
subject to a transverse magnetic field. Knowing that the magnetic field suppresses
velocity gradients in its direction, they have assumed that the current density in the
core of the flow is small, so that ∇φ balances u× B. Platnieks (1971), in a comparative
study of hot-wire anemometric and potential measurements of turbulence intensities in
liquid metals, reported good agreement between results obtained by the two methods
for Ha > 50, where Ha was based on the width of the channel under consideration.

The probes located on the wall of the test section are expected to give information
on two components (x and y) of the velocity in a plane transverse to the magnetic field,
B. Since uz is in the direction of B, Ohm’s law precludes its measurement. If any probes
aligned with the magnetic field were located in the core of the flow, they would measure
only the current jz . For an axisymmetric, swirling vortex, there is no potential variation
in the θ-direction. Thus, the measurement of ur from circumferential measurements
of (∇φ) is also ruled out. The only component of velocity that can be measured is
uθ . The rate of decay of Eθ being nearly identical to that of the total energy, E,
even for a fully nonlinear evolution (Sreenivasan 2000), the measurement of uθ alone
should be adequate to understand the evolution of the total mean square velocity, u2.
Probes a − b lie exactly along a radius, hence they are ideal for the measurement of
uθ (see figure 3). Ohm’s law, in the form given by equation (6), gives an estimate of
the ‘parallel’ component of the electric current as

j‖ ∼ σBu
(
l⊥
l‖

)
, (19)

and by the condition of current conservation, the radial component of the current is
estimated by

jr ∼ −σBuθ
(
l⊥
l‖

)2

. (20)

Now, the radial component of Ohm’s law can be written as

−σBuθ
(
l⊥
l‖

)2

∼ σ[−(∇φ)r + uθB],

or

(∇φ)r ∼ uθ B
[

1 +

(
l⊥
l‖

)2
]
.


(21)

When t = 5τ, (l‖/l⊥) ≈ 2, so the velocity is estimated with an error of 20%. When the
flow structure has propagated over half the width of the test cell (l‖ ≈ 40 mm), the
error is of order 1/16. The potential measurement thus gives a fairly good estimate
of the velocity after the first few Joule times. The results shown in § 4.3 are based on
the potentials measured at the two walls of the test section, but in the light of the
above discussion, we express the potentials in terms of the respective velocities, so as
to give a better physical feel for the reader.
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Another approximation commonly associated with wall-potential measurements
is that the jump in potential across the Hartmann layer is negligible, so that the
distribution of electric potential in the core region and the Hartmann walls is nearly
identical (see, for example, Burr et al. 2000). Though this assumption may well be true,
an order-of-magnitude analysis should verify this. The current conservation condition
for the Hartmann layer can be integrated over the thickness of the layer, δ (∼ 1/Ha),
to give

j‖ = − L

Ha

∂j⊥
∂l⊥

, (22)

where L is the spacing between the walls. Now, since the parallel component of the
current is directly obtained from the parallel gradient of potential, i.e.

j‖ = −σ
(
∂φ

∂z

)
Ha

, (23)

the potential difference across the Hartmann layer is essentially

(∆φ)Ha ∼ 1

σ

L2

Ha2

j⊥
l⊥

; (24)

j⊥ cannot be greater than σBuc, where uc is the velocity in the core of the flow. This
can be taken as a conservative estimate of j⊥. Hence, the ratio of the potential drop
across the Hartmann layer to that measured at the wall between probes a and b in
figure 3 can be written as follows:

(∆φ)Ha
(∆φ)ab

∼
(
L

Ha

)2
1

δabl⊥
, (25)

where δab is the potential probe spacing at the wall. In the present experiment,
L = 80 mm, l⊥ ≈ 10 mm and δab = 2.5 mm. Even for a magnetic field of 0.1 T, the
above ratio is of order 10−2. For the range of magnetic fields considered in this
study (0.4–0.9 T), the gradient in potential across the Hartmann layer will certainly be
small.

4.3. Effect of N0 on vortex evolution

The decay phase of a vortex at N0 = 3, when studied in isolation (see figure 7), reveals
the interesting trend of two different rates of decrease of u2: one, a decay rate of
(t/τ)−1 in the range 3τ < t < 10τ, and the other a rate of (t/τ)−9/5 until t ≈ 30τ. The
former phase corresponds to the ‘linear’ evolution described in § 1, because a decay
of (t/τ)−1/2 for the total energy, and a growth rate of (t/τ)1/2 for the parallel length

scale implies an evolution law of ∼ (t/τ)−1 for u2. The latter phase must be nonlinear,

because the rate of decay is equal to the rate of decay of u2 predicted in § 2, equation
(12). The experimental result departs from the theoretical prediction at small Joule
times, since the method of estimation of the velocity by potential measurement fails
due to the presence of significant induced electric currents in the core of the flow.
Also, the linear decay law E ∼ (t/τ)−1/2 is expected to hold only at times greater than
τ. The good agreement observed after t ≈ 3τ is a clear indication of the fact that the
magnitude of the current density in the core has fallen to a value low enough to make
∇φ of the same order as u× B.

The predicted law for the nonlinear phase is not valid for t > 25τ, because further
evolution is limited by the presence of the walls normal to the field. The attainment of
a ‘two-dimensional’ state is evident from the rise of the velocity correlation coefficient
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Figure 7. Mean square velocity of a vortex as a function of time, for N0 = 3, and the corresponding
velocity correlation coefficients (right ordinate) shown superposed. u1 and u2 are the velocities
measured on opposite walls normal to the external field, at points that lie along the field lines. They
are derived from the respective potential differences. The magnetic field, B = 0.6 T.
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Figure 8. Mean square velocity of a vortex as a function of time, for N0 = 3,
and the corresponding velocity correlation coefficients. B = 0.72 T.

curve (shown on the right ordinate in figure 7, in linear scale), which occurs nearly at
the same time as the departure of the experimental curve of u2 from the theoretical
line. Figure 8 shows the results for N0 = 3, achieved by generating a higher initial
velocity field, and imposing a suitably higher magnetic field. The trend is very similar
to that observed in figure 7. This result is significant because it tells us that the
evolution is dependent only on the value of N0.

As N0 increases (figures 9–11) one can observe that both the linear and nonlinear
phases last longer (in terms of Joule times). The fluctuations observed in the signal
at higher field strengths can be attributed to the noise generated by the power
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Figure 9. Mean square velocity, for N0 = 3.7, and the corresponding
correlation coefficients. B = 0.72 T.
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Figure 10. Mean square velocity of a vortex, for N0 = 6, and the corresponding
velocity correlation coefficients. B = 0.88 T.

transformer being superposed on the signal. If the Lorentz forces are significantly
larger than the nonlinear inertial forces, the vortex should evolve for a larger number
of Joule times before the fall of electric current in the core brings the two forces
to a state of equilibrium. Further, the rate of growth of the parallel length scale of
the vortex is lower during the linear phase compared to that in the nonlinear phase,
so that there is enough scope for elongation of the vortex in the nonlinear phase
until l‖ is equal to the transverse dimension of the cavity (80 mm). For N0 = 7.7
(figure 11), the longest possible linear phase is obtained in the experiment (that lasts
until t ≈ 50τ). A two-dimensional state is attained when t ≈ 70τ. On the other hand,
for N0 = 1 (see figure 13), the evolution begins with the nonlinear phase, and lasts
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Figure 11. Mean square velocity of a vortex, for N0 = 7.7, and the corresponding
velocity correlation coefficients. B = 0.92 T.
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Figure 12. Mean square velocity of a vortex as a function of time, for N0 = 1.4,
and the corresponding velocity correlation coefficients. B = 0.50 T.

only for about 12 Joule times before the flow structure meets the opposite wall. The
absence of the linear phase leads to the conclusion that the inertial and Lorentz forces
are of the same order of magnitude initially. It may be noted that even for N0 = 1.4,
there exists a linear phase preceding the nonlinear evolution (figure 12).

Table 1 summarizes the initial conditions, the dimensionless groups and the ap-
proximate values of the time scales measured in the experiments. Here, u0 is the
estimated initial velocity, Re is the initial Reynolds number based on the vortex
diameter, and ReHa is the Reynolds number based on the thickness of the Hartmann
layer. The subscript l refers to the end of the linear phase, and nl, the termination of
the nonlinear phase enforced by the walls of the test section.
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B,T τ, s u0, m s−1 Re N0 (t/τ)l tl , s (t/τ)nl tnl , s Ha ReHa

0.92 0.015 0.085 7460 7.7 50 0.77 70 1.08 1900 30
0.85 0.018 0.094 8250 5.9 25 0.45 50 0.90 1820 38
0.78 0.021 0.093 8160 5.0 20 0.43 40 0.86 1600 40
0.72 0.025 0.106 9300 3.7 17 0.43 35 0.88 1600 50
0.60 0.036 0.088 7720 3.0 10 0.36 25 0.94 1240 50
0.72 0.025 0.133 11,670 3.0 10 0.25 30 0.75 1490 63
0.50 0.052 0.133 11,670 1.4 10 0.52 18 0.94 1030 90
0.50 0.052 0.192 16,840 1.0 — — 12 0.624 1030 130

Table 1. Summary of the approximate initial conditions, dimensionless parameters and measured
time scales in the experiments.
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Figure 13. Mean square velocity of a vortex, for N0 = 1.0, and the corresponding velocity
correlation coefficients. B = 0.50 T. The absence of the linear phase may be noted.

Figure 14 gives the dependence of the linear–nonlinear transition times on the initial
interaction parameter. The experimental data points are compared with the curve
(t/τ)l = 0.8N2

0 . Though an N2
0 -law for the transition time looks plausible, transition

data at higher values of N0 are needed to validate the theoretical prediction.

In all experiments (with the possible exception of the case N0 = 1), the correlation
coefficient of the voltages measured at the opposite walls of the test section rises to
a value less than unity. This implies that, even if the swirl motion has diffused as far
as the other wall of the cavity, the two potentials may not be equal. Earlier studies
on the two-dimensionality of MHD flows reported by Votsish & Kolesnikov (1975)
and Branover (1978) have indicated that the correlation coefficients of the velocity
fluctuations at two points aligned with the magnetic field, but spaced apart, never
became equal to unity, even when the field was strong. However, at the end of our
measured nonlinear decay phase, we find that the velocity of the vortex has fallen by
one order of magnitude (u ∼ 0.01 m s−1). When the value of the potential difference
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Figure 14. Variation of the linear–nonlinear transition time with N0, in logarithmic coordinates. The
experimental data points are shown by the symbol ∗, and the solid line is the curve (t/τ)l = 0.8N2

0 .

approaches the limit of resolution (∼ 10 µV), it is likely that the recorded correlation
coefficients are prone to errors.

4.4. Attempted experiments at low N0

Experiments at interaction parameters smaller than unity have not yielded conclusive
results. A t−9/5 decay law has been found until t ≈ 10τ, when N0 = 0.9. At low N0,
the evolution of a vortex is complex. The turn-over time of the vortex is sufficiently
smaller than the Joule time that the dominant inertial forces cause the vortex to
break down into a ring that propagates radially outward. On the other hand, angular
momentum also diffuses along the field lines due to weak Joule dissipation. It is
not clear whether, in our experiments, wall friction damps out the radial motion of
the structure. An experiment at N0 = 0.7 gave a t−1.5 decay law for the square of
the velocity, which cannot be explained based on our model for nonlinear evolution.
Experiments at smaller N0 are beset with further uncertainties. If the magnetic field
is kept strong enough, the initial velocity must be high enough to keep N0 small.
This results in a value of ReHa ∼ 200, which could mean that the Hartmann layer
is turbulent, and the dissipation rate there is higher; see, for example, Lingwood &
Alboussière (1999). All the experiments referred to in table 1 have been performed
at ReHa 6 130. Experiments at higher values of ReHa have not given consistent decay
laws. For a weaker field (B = 0.3 T), it is not clear why consistent results are not
obtained, though ReHa is small enough to give a sound result. A possible reason could
be the higher contribution of Hartmann friction to the overall damping of the vortex;
see Appendix B.

The study of the growth of length scales using the internal side probes has been
unsuccessful because of the intrusive nature of the measurement system. It was hoped
that, by positioning these probes outside the intense swirl region of the vortex, the
correlations of the velocity measured by them could be studied. The voltages measured
were too low to give any conclusive result.
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5. Discussion

In this paper, we have described an experimental study that investigates the
evolution of a vortex in a liquid metal subject to a uniform magnetic field. The
initial interaction parameter is varied to study how the relative magnitudes of the
electromagnetic and nonlinear inertial forces affect the decay of the vortex. The
present study is unique in two respects:

1. The initial ‘linear’ phase of decay of an MHD flow field at large N0 has been
observed for the first time in a laboratory experiment. This regime can be obtained
in a MHD experiment only if the magnetic field is sufficiently strong or the initial
velocity is sufficiently small, both of which contribute to a high value of N0.

2. It has been possible to demonstrate experimentally that, for large N0, there exist
two different regimes of decay for a three-dimensional vortex evolving in a large do-
main. This interesting behaviour was predicted by Sreenivasan & Alboussière (2000),
based on the definition of the true interaction parameter, Nt. This dimensionless
number decreases and tends to a constant of order one at the end of the linear phase,
and remains invariant during the subsequent nonlinear evolution.

As the initial interaction parameter is lowered from a high value, the linear phase
of evolution becomes shorter, and when N0 = 1 it disappears totally. Though the
definition of N0 is based on an order of magnitude of the initial velocity estimated
by relation (15), the particular result for the case N0 = 1 shows that the calculated
value can be confidently accepted as the actual value realized in the experiment.

Though the method of estimating velocities by wall potential measurements is
only approximate unless the flow is fully two-dimensional, the experimental decay
laws agree fairly well with the order-of-magnitude estimates. This indicates that (a)
except for the first few Joule times, the current density in the core of the flow can
be considered to be small, and (b) Hartmann layer dissipation of the flow is small in
comparison with the ohmic dissipation in the core, for the field strengths considered
in the present study. From a theoretical point of view, our results are consistent with
(a) the component of angular momentum along the axis of the vortex being nearly
conserved, (b) viscous damping of the vortex being negligible in comparison with
ohmic damping in both regimes of evolution, and (c) the actual ratio of the Lorentz
to the nonlinear inertial forces being approximately a constant during the nonlinear
phase. Of the above, the angular momentum appears to be a robust invariant during
the duration of an experiment (see Appendix A).

The laws of decay of a vortex were derived assuming that the structure was free
from the influence of boundaries. It would be relatively difficult to create and study
a swirling vortex in the core of the test section by non-intrusive means. The effect
of the wall on the initial evolution of the vortex is not well-understood. If the good
agreement of the experimental results with the theoretical estimates for the two
regimes (u2 ∼ (t/τ)−1, ∼ (t/τ)−9/5) is any indication, our initial assumption that the
wall does not play a significant role in the long-time evolution of the vortex (until a
two-dimensional state is reached) was well-founded.

The use of potential measurements at the wall to study core flow dynamics has
the advantage that the system is non-intrusive, but velocities obtained are those just
outside the Hartmann layer where the vortex is generated. At the propagating front
of the vortex, the velocity will be lower. However, the rate of decay of u2 at every
section follows the same laws, so that the ‘local’ measurements obtained near one wall
do give a ‘global’ picture of the evolution. An experimental study of the growth of
the length scales, l‖ and l⊥, though difficult to perform, should give a more complete
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description of the decay, especially in the nonlinear phase. In the absence of these
data, one needs to have recourse to the theoretical laws of evolution of the length
scales, and adopt relation (12) for interpreting the experimental results.

In principle, N0 can be varied by adjusting the magnetic flux density as well as the
initial swirl velocity of the vortex. However, we have found that a minimum initial
velocity of about 0.1 m s−1, as estimated by relation (15), needs to be ensured so that
the velocity is within measurable limits throughout the duration of an experiment.
Hence, higher values of N0(> 5) have been achieved by increasing the magnetic flux
density, and not by reducing the intensity of the pulsed current. The maximum value
of N0 realized in this study (≈ 8) is thus limited by the maximum field strength. If
sufficiently higher fields can be imposed, a purely linear evolution can be seen until
two-dimensionality is reached. Further, the range of observation of the power laws for
the linear and nonlinear phases is limited by the maximum magnetic field available
as well as the finite size of the cavity. A higher magnetic field and a larger transverse
dimension of the box should permit the study of one decade of decay of the kinetic
energy in both phases. Despite the above physical constraints in the experiment,
a clear transition from one regime to another can be captured during the vortex
evolution, by choosing a suitably high value of the initial interaction parameter.

It would be interesting to consider the implications of our results in the larger
context of low-Rm MHD turbulence. It is noteworthy that the t−1.7 decay law for the
energy, u2, obtained by Alemany et al. (1979) was for N0 ∼ 1. In a grid-generated
turbulence experiment like theirs, it would have been difficult to achieve high values
of N0 because of the modest magnetic field strength and the small initial length scale.
Hence, the regime observed by them was nonlinear from the beginning. In the absence
of published experimental data on the long-time evolution of MHD turbulence at
large N0, it is reasonable to suppose that energy is dissipated as (t/τ)−1/2 during a

linear phase τ < t < N
4/3
0 τ, and then as (t/τ)−1.7 during the subsequent nonlinear

phase.

Binod Sreenivasan’s work was supported by a Cambridge Nehru–Chevening schol-
arship and a Junior Research Fellowship from Hughes Hall, Cambridge.

Appendix A. Decay of angular momentum
We have seen that conservation of the component of angular momentum parallel

to the external magnetic field is an important condition that governs the evolution of
a vortex in an infinite domain. However, in our experiment, vortices are generated at
one of the vertical walls of the test section. As the flow structure elongates, viscous
shear at the wall where the structure is generated opposes the swirl motion and causes
the angular momentum to decay in time. The magnitude of the shear stress is

τH = µ
∂uH

∂y
= µ

∂

∂y
[uc(1− e−η Ha)]

= µuce
−ηHa(Ha/L), (A 1)

where uH is the velocity in the Hartmann layer, which is known to vary exponen-
tially along the coordinate parallel to the magnetic field, y (Moreau 1990); η is the
dimensionless length y/L, and Ha the Hartmann number. As η increases, the velocity
approaches the value in the core, uc. The shear stress at the wall (y = 0) is

τH,0 = µuc(Ha/L), (A 2)
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and the torque acting on the vortex due to shear at one wall is given by

TH =

∫ δ

r=0

µuc
Ha

L
r 2πrdr ∼ µucHa δ

3

L
, (A 3)

where δ is the characteristic radius of the vortex. Now the angular momentum is
defined by

H = ρ

∫
V

(x× u) dV = ρ

∫ δ

r=0

ucr 2πrdrL

∼ ρucδ3L, (A 4)

where ρ is the density of the liquid and L the maximum length scale attained by the
vortex. Since dH/dt = −TH , the characteristic time for decay of H is

tH =
L2

νHa
∼
( ρ
σν

)1/2 L

B
, (A 5)

where B is the flux density. For a field strength of 0.5 T acting on mercury (ν =
1.144 × 10−7 m2 s−1, σ = 1.04 × 106 Ω−1 m−1, ρ = 13.55 × 103 kg m−3), contained in
the chamber used in our experiments (where L = 80 mm), the above time scale is
found to be approximately 50 s. Since this time scale is much greater than the typical
duration of one experiment (∼ 1 s), it can be stated with confidence that the angular
momentum of the vortex is nearly invariant during the measured evolution.

The time scale for decay of H is found to be equal to the time for the decay
of turbulence due to Hartmann braking (Joule damping in the Hartmann layers)
estimated by Sommeria & Moreau (1982).

Appendix B. Hartmann layer dissipation vs. core dissipation
The energy decay of a vortex in a magnetic field is modelled theoretically under

the assumption that the domain is infinite, or the electrically insulating boundaries
are situated far enough from the vortex that their influence is not felt in the evolution
process. Hence, the decay is solely due to Joule dissipation in the core of the flow.
In an experiment, the presence of boundaries normal to the magnetic field gives
rise to Hartmann layers where the velocity goes to zero at the walls. Viscous and
Joule dissipation in the Hartmann layers also contribute to the destruction of kinetic
energy. It is instructive to evaluate the relative magnitudes of the core and Hartmann
layer dissipation rates in the present experiment.

The viscous dissipation per unit volume in the Hartmann layer is

Dv = µ

(
∂uH

∂y

)2

= σB2u2
ce
−2ηHa. (B 1)

Here, we have made use of the exponential solution for uH , which goes to zero at the
wall (y = 0) and tends to the core velocity, uc, at large η. The Joule dissipation in
the Hartmann layer can be estimated from the current flowing in the layer. Since the
gradient of potential remains practically unchanged through the Hartmann layer, the
current is given by the expressions

jH = σ[−(∇φ)Ha + (u× B)Ha],

jH = σ[−ucB + uc(1− e−ηHa)B],

= −σBuce−ηHa.

 (B 2)
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The Joule dissipation per unit volume is then given by

Dj = j2/σ = σB2u2
ce
−2ηHa. (B 3)

The magnitudes of the viscous and Joule dissipation rates in the Hartmann layer are
equal. The total dissipation per unit mass can be estimated as

DH ∼ 2
σB2

ρ
u2
c

∫ ∞
y=0

exp
(
−2η

y

L
Ha
)
δ2 dy

∼ u2
cδ

2L

τHa
, (B 4)

where δ is the radius of the eddy.
The dissipation in the core of the flow, as estimated in (9), is

Dc ∼ −E
τ

(
l⊥
l‖

)2

∼ −u
2
cδ

2l‖
τ

δ2

l2‖
. (B 5)

The ratio of the Hartmann dissipation to the core dissipation of a vortex will be

DH

Dc
=

1

Ha

l‖L
δ2
. (B 6)

For a given magnetic field, Hartmann dissipation will be the most significant when
the parallel length scale of the eddy attains the size of the cavity (l‖ ≈ L). If the eddy
is fully two-dimensional, Hartmann layers at both walls contribute to the damping of
the vortex, but the current in the core of the flow would have dropped to zero. For a
field strength of 0.5 T acting on a structure of radius 5 mm and length nearly 40 mm
in mercury, the above ratio will be 0.12. The lower the field strength, the larger the
contribution of Hartmann dissipation to the overall damping. For a field strength of
0.1 T, the Hartmann dissipation can account for up to 40% of the total dissipation
or more depending on the size of the vortex. To ensure that the measured decay
of kinetic energy is a true representation of the dissipation in the core, the applied
magnetic field should be reasonably high, so that the ratio (B 6) is small.
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